Noninvasive Cuffless Blood Pressure Monitoring. How Mechanism-Driven and Data-Driven Models Can Help in Clinical Practice

Main Article Content

Mohamed Zaid*
Mihail Popescu
Laurel Despins
James Keller
Marjorie Skubic
Giovanna Guidoboni

Abstract

Continuous noninvasive cuffless blood pressure (BP) monitoring is essential for early detection and treatment of hypertension. In this paper, we provide an overview of the recent advancements in cuffless BP sensors. These include contact wearable sensors such as electrocardiography (ECG), photoplethysmography (PPG), contact non-wearable sensors such as ballistocardiography (BCG), and contactless sensors such as video plethysmography (VPG). These sensors employ different measuring mechanisms such as pulse arrival time (PAT), pulse transit time (PTT), and pulse wave analysis (PWA) to estimate BP. However, challenges exist in the effective use and interpretation of signal features to obtain clinically reliable BP measurements. The correlations between signal features and BP are obtained by mechanism-driven models which use physiological principles to identify mathematical correlations, and data-driven models which use machine learning algorithms to analyze observational data to identify multidimensional correlations. On the one hand, applying mechanism-driven models to non-linear scenarios and incomplete or noisy data is challenging On the other hand, data-driven models require a large amount of data in order to prevent physically inconsistent predictions, resulting in poor generalization. From this perspective, this paper proposes to combine the strengths of mechanism-driven and data-driven approaches to obtain a more comprehensive approach, the physiology-informed machine-learning approach, with the goal of enhancing the accuracy, interpretability, and scalability of continuous cuffless BP monitoring. This holds promise for personalized clinical applications and the advancement of hypertension management.

Article Details

Zaid, M., Popescu, M., Despins, L., Keller, J., Skubic, M., & Guidoboni, G. (2023). Noninvasive Cuffless Blood Pressure Monitoring. How Mechanism-Driven and Data-Driven Models Can Help in Clinical Practice. Journal of Cardiology and Cardiovascular Medicine, 8(2), 081–085. https://doi.org/10.29328/journal.jccm.1001157
Short Communications

Copyright (c) 2023 Zaid M, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Cardiology and Cardiovascular Medicine is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Cardiology and Cardiovascular Medicine is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, Myers MG, Ogedegbe G, Schwartz JE, Townsend RR, Urbina EM, Viera AJ, White WB, Wright JT Jr. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension. 2019 May;73(5):e35-e66. doi: 10.1161/HYP.0000000000000087. PMID: 30827125.

Mukkamala R, Stergiou GS, Avolio AP. Cuffless Blood Pressure Measurement. Annu Rev Biomed Eng. 2022 Jun 6;24: 203-230. doi: 10.1146/annurev-bioeng-110220-014644. Epub 2022 Apr 1. PMID: 35363536.

Bradley CK, Shimbo D, Colburn DA, Pugliese DN, Padwal R, Sia SK, Anstey DE. Cuffless Blood Pressure Devices. Am J Hypertens. 2022 May 10;35(5):380-387. doi: 10.1093/ajh/hpac017. PMID: 35136906; PMCID: PMC9088838.

Pandit JA, Lores E, Batlle D. Cuffless Blood Pressure Monitoring: Promises and Challenges. Clin J Am Soc Nephrol. 2020 Oct 7;15(10):1531-1538. doi: 10.2215/CJN.03680320. Epub 2020 Jul 17. PMID: 32680913; PMCID: PMC7536750.

Al-Makki A, DiPette D, Whelton PK, Murad MH, Mustafa RA, Acharya S, Beheiry HM, Champagne B, Connell K, Cooney MT, Ezeigwe N, Gaziano TA, Gidio A, Lopez-Jaramillo P, Khan UI, Kumarapeli V, Moran AE, Silwimba MM, Rayner B, Sukonthasan A, Yu J, Saraffzadegan N, Reddy KS, Khan T. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension. 2022 Jan;79(1):293-301. doi: 10.1161/HYPERTENSIONAHA.121.18192. Epub 2021 Nov 15. PMID: 34775787; PMCID: PMC8654104.

C for Disease Control and Prevention. Health topics–high blood pressure. https://www.cdc.gov/policy/polaris/healthtopics/highbloodpressure/index.html, 2022.

Lackland DT. Early-Life Detection of Hypertension Risks: Implications for Clinical Practice and Research. Hypertension. 2017 Sep;70(3):486-487. doi: 10.1161/HYPERTENSIONAHA.117.09529. Epub 2017 Jul 3. PMID: 28674035.

Le T, Ellington F, Lee TY, Vo K, Khine M, Krishnan SK, Dutt N, Cao H. Continuous non-invasive blood pressure monitoring: a methodological review on measurement techniques. IEEE Access. 2020; 8:212478–212498.

Sola J, Delgado-Gonzalo R. The handbook of cuffless blood pressure monitoring. Cham: Springer, 2019.

Ding XR, Zhao N, Yang GZ, Pettigrew RI, Lo B, Miao F, Li Y, Liu J, Zhang YT. Continuous Blood Pressure Measurement from Invasive to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig. IEEE J Biomed Health Inform. 2016 Nov;20(6):1455-1465. doi: 10.1109/JBHI.2016.2620995. PMID: 28113184.

Chandrasekhar A, Yavarimanesh M, Natarajan K, Hahn JO, Mukkamala R. PPG Sensor Contact Pressure Should Be Taken In to Account for Cuff-Less Blood Pressure Measurement. IEEE Trans Biomed Eng. 2020 Nov;67(11):3134-3140. doi: 10.1109/TBME.2020.2976989. Epub 2020 Feb 28. PMID: 32142414; PMCID: PMC8856571.

Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, Kyal S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans Biomed Eng. 2015 Aug;62(8):1879-901. doi: 10.1109/TBME.2015.2441951. Epub 2015 Jun 5. PMID: 26057530; PMCID: PMC4515215.

Kim CS, Carek AM, Mukkamala R, Inan OT, Hahn JO. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring. IEEE Trans Biomed Eng. 2015 Nov;62(11):2657-64. doi: 10.1109/TBME.2015.2440291. Epub 2015 Jun 2. PMID: 26054058; PMCID: PMC4626385.

Zaid M, Sala L, Ivey JR, Tharp DL, Mueller CM, Thorne PK, Kelly SC, Silva KAS, Amin AR, Ruiz-Lozano P, Kapiloff MS, Despins L, Popescu M, Keller J, Skubic M, Ahmad S, Emter CA, Guidoboni G. Mechanism-Driven Modeling to Aid Non-invasive Monitoring of Cardiac Function via Ballistocardiography. Front Med Technol. 2022 Feb 16;4:788264. doi: 10.3389/fmedt.2022.788264. PMID: 35252962; PMCID: PMC8888976.

Su BY, Enayati M, Ho KC, Skubic M, Despins L, Keller J, Popescu M, Guidoboni G, Rantz M. Monitoring the Relative Blood Pressure Using a Hydraulic Bed Sensor System. IEEE Trans Biomed Eng. 2019 Mar;66(3):740-748. doi: 10.1109/TBME.2018.2855639. Epub 2018 Jul 13. PMID: 30010544.

Sugita N, Yoshizawa M, Abe M, Tanaka A, Homma N, Yambe T. Contactless technique for measuring blood-pressure variability from one region in video plethysmography. Journal of Medical and Biological Engineering. 2019; 39:76–85.

Zhao H, Gu X, Hong H, Li Y, Zhu X, Li C. Non-contact beat-to-beat blood pressure measurement using continuous wave doppler radar. In the 2018 IEEE/MTT-S International Microwave Symposium-IMS. IEEE. 2018;1413–1415.

Vysotskaya N, Will C, Servadei L, Maul N, Mandl C, Nau M, Harnisch J, Maier A. Continuous Non-Invasive Blood Pressure Measurement Using 60 GHz-Radar-A Feasibility Study. Sensors (Basel). 2023 Apr 19;23(8):4111. doi: 10.3390/s23084111. PMID: 37112454; PMCID: PMC10145629.

Guidoboni G, Sala L, Enayati M, Sacco R, Szopos M, Keller JM, Popescu M, Despins L, Huxley VH, Skubic M. Cardiovascular Function and Ballistocardiogram: A Relationship Interpreted via Mathematical Modeling. IEEE Trans Biomed Eng. 2019 Oct;66(10):2906-2917. doi: 10.1109/TBME.2019.2897952. Epub 2019 Feb 6. Erratum in: IEEE Trans Biomed Eng. 2020 Oct;67(10):3001. PMID: 30735985; PMCID: PMC6752973.

El-Hajj C, Kyriacou PA. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomedical Signal Processing and Control. 2020; 58: 101870.

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-informed machine learning. Nature Reviews Physics. 2021; 3(6):422–440.

Starr I, Noordergraaf A. Ballistocardiography in cardiovascular research: Physical aspects of the circulation in health and disease. Lippincott, 1967.

Zaid M, Ahmad S, Suliman A, Camazine M, Weber I, Sheppard J, Popescu M, Keller J, Despins L, Skubic M, Guidoboni G. Noninvasive cardiovascular monitoring based on electrocardiography and ballistocardiography: a feasibility study on patients in the surgical intensive care unit. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:951-954. doi: 10.1109/EMBC46164.2021.9629531. PMID: 34891446.

Lee KJ, Roh J, Cho D, Hyeong J, Kim S. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors (Basel). 2019 Jan 31;19(3):595. doi: 10.3390/s19030595. PMID: 30708934; PMCID: PMC6387459.

Marazzi NM, Guidoboni G, Zaid M, Sala L, Ahmad S, Despins L, Popescu M, Skubic M, Keller J. Combining Physiology-Based Modeling and Evolutionary Algorithms for Personalized, Noninvasive Cardiovascular Assessment Based on Electrocardiography and Ballistocardiography. Front Physiol. 2022 Jan 12;12:739035. doi: 10.3389/fphys.2021.739035. PMID: 35095545; PMCID: PMC8790319.