Femoral venous closure: A single-centre retrospective analysis in real world all comers with MynxGrip® vascular closure device
Main Article Content
Abstract
Background: Vascular closure devices (VCD) are routinely used to achieve haemostasis following percutaneous arterial procedures. The extravascular polyethylene-glycol based MynxGrip® device (Cardinal Health) received FDA approval for use in the closure of femoral veins, but so far limited data is available on its use, especially with concomitant use of anticoagulants.
Method: This is a retrospective analysis of data from a single-centre on the effectiveness and complication rates following the use of the MynxGrip® device for femoral venous closure in patients undergoing diagnostic/interventional (temporary pacing during balloon aortic valvuloplasty, or electrophysiology) procedures utilising 5-7F sheaths.
Results: 85 patients (mean age 74 years) underwent femoral venous closure with the MynxGrip® device. 51.8% were male. The rate of concomitant anticoagulant or antiplatelet use was 52.9%. Device deployment was 100% successful with full haemostasis in all cases. There were no major vascular complications (bleeding, thrombosis, or infections). There was one case of a minor small venous hematoma which did not require treatment. The mean length of stay was less than 1 day (67.1% patients discharged the same day) and overnight stay only indicated by interventional procedure.
Conclusion: These data support safety and efficacy of the MynxGrip® device for femoral venous closure with same-day discharge, even with concomitant aggressive antiplatelet and anticoagulant use. It has the potential for use in other large bore venous access sites.
Article Details
Copyright (c) 2020 Harvard A, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of Cardiology and Cardiovascular Medicine is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.
License: Copyright © 2017 - 2025 | Open Access by Journal of Cardiology and Cardiovascular Medicine is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.
With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.
Compliance 'CC BY' license helps in:
Permission to read and download | ✓ |
Permission to display in a repository | ✓ |
Permission to translate | ✓ |
Commercial uses of manuscript | ✓ |
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
Noori VJ, Eldrup-Jørgensen J. A systematic review of vascular closure devices for femoral artery puncture sites. J Vasc Surg. 2018; 68: 887-899. PubMed: https://pubmed.ncbi.nlm.nih.gov/30146036
Fargen KM, Hoh BL, Mocco J. A prospective randomized single-blind trial of patient comfort following vessel closure: extravascular synthetic sealant closure provides less pain than a self-tightening suture vascular compression device. J Neurointerv Surg. 2011; 3: 219-223. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21990828
Robertson L, Andras A, Colgan F, Jackson R. Vascular closure devices for femoral arterial puncture site haemostasis. Cochrane Database Syst Rev. 2016; 3: CD009541. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26948236
Cox T, Blair L, Huntington C, Lincourt A, Sing R, et al. Systematic Review of Randomized Controlled Trials Comparing Manual Compression to Vascular Closure Devices for Diagnostic and Therapeutic Arterial Procedures. Surg Technol Int. 2015; 27: 32-44. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26680377
Tsui JY, Collins AB, White DW, Lai J, Tabas JA. Videos in clinical medicine. Placement of a femoral venous catheter. N Engl J Med. 2008; 358: e30. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18579807
Coto HA. Closure of the femoral vein puncture site after transcatheter procedures using Angio-Seal. Catheter Cardiovasc Interv. 2002; 55: 16-19. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11793489
Maraj I, Budzikowski AS, Ali W, Mitre CA, Kassotis J. Use of vascular closure device is safe and effective in electrophysiological procedures. J Interv Card Electrophysiol. 2015; 43: 193-195. PubMed: https://pubmed.ncbi.nlm.nih.gov/25921347/
Shaw JA, Dewire E, Nugent A, Eisenhauer AC. Use of suture-mediated vascular closure devices for the management of femoral vein access after transcatheter procedures. Catheter Cardiovasc Interv. 2004; 63: 439-443. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15558775
Mahadevan VS, Jimeno S, Benson LN, McLaughlin PR, Horlick EM. Pre-closure of femoral venous access sites used for large-sized sheath insertion with the Perclose device in adults undergoing cardiac intervention. Heart. 2008; 94: 571-572. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17085529
Mylonas I, Sakata Y, Salinger M, Sanborn TA, Feldman T. The use of percutaneous suture-mediated closure for the management of 14 French femoral venous access. J Invasive Cardiol. 2006; 18: 299-302. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16816433
Rüter K, Puls M, von der Ehe K, Tichelbäcker T, Sobisiak B, et al. Preclosure of femoral vein access site with the suture-mediated Proglide device during MitraClip implantation. J Invasive Cardiol. 2013; 25: 508-510. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24088424
Hamid T, Rajagopal R, Pius C, Clarke B, Mahadevan VS. Preclosure of large-sized venous access sites in adults undergoing transcatheter structural interventions. Catheter Cardiovasc Interv. 2013; 81: 586-590. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22431302
Geis NA, Pleger ST, Chorianopoulos E, Müller OJ, Katus HA, et al. Feasibility and clinical benefit of a suture-mediated closure device for femoral vein access after percutaneous edge-to-edge mitral valve repair. EuroIntervention. 2015; 10: 1346-1353. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24694560
Dou E, Winokur RS, Sista AK. Venous Access Site Closures Using the VASCADE Vascular Closure System. J Vasc Interv Radiol. 2016; 27: 1885-1888. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27886954
Hmoud H, Sturla M, Delucia L, DeGregorio L, DeGregorio J. Closure of mid-bore venotomies with VASCADE VCD after right and left heart catheterization. Catheter Cardiovasc Interv. 2019; 93: 626-630. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30280486
Srivatsa SS, Srivatsa A, Spangler TA. Mynx vascular closure device achieves reliable closure and hemostasis of percutaneous transfemoral venous access in a porcine vascular model. J Invasive Cardiol. 2015; 27: 121-127. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25661765
Ben-Dor I, Craig P, Torguson R, Rogers T, Buchanan KD, et al. MynxGrip® vascular closure device versus manual compression for hemostasis of percutaneous transfemoral venous access closure: Results from a prospective multicenter randomized study. Cardiovasc Revasc Med. 2018; 19: 418-422. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29656937
Hutchings D, Hayat A, Karunakaran A, Malik N. Success, Safety, and Efficacy of the Mynx Femoral Closure Device in a Real-World Cohort: Single-Center Experience. J Invasive Cardiol. 2016; 28: 104-108. PubMed: https://pubmed.ncbi.nlm.nih.gov/26945253
Verma D, Lee N, Tandar A, Badger T, Dranow E, et al. A Propensity Score Analysis of Venous Access Closure Using Extravascular Closure Device In High Risk Patients. J Am College Cardiol. 2014; 64: B248. https://core.ac.uk/download/pdf/82597051.pdf
Waksman R, Ben-Dor I, Rogers T, Torguson R, Buchanan K, et al. Mynxgrip vascular closure device is safe and effective for hemostasis of percutaneous transfemoral venous access closure. J Am College Cardiol. 2018; 71: 1432. https://www.onlinejacc.org/content/71/11_Supplement/A1432
Fields JD, Liu KC, Lee DS, Gonda SJ, Dogan A, et al. Femoral artery complications associated with the Mynx closure device. AJNR Am J Neuroradiol. 2010; 31: 1737-1740. PubMed: https://pubmed.ncbi.nlm.nih.gov/20538826/
Islam MA, George AK, Norris M. Popliteal artery embolization with the Mynx closure device. Catheter Cardiovasc Interv. 2010; 75: 35-37. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19708082
Noor S, Meyers S, Curl R. Successful reduction of surgeries secondary to arterial access site complications: a retrospective review at a single center with an extravascular closure device. Vasc Endovascular Surg. 2010; 44: 345-349. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20484072
Gupta A, Perera T, Ganesan A, Sullivan T, Lau DH, et al. Complications of catheter ablation of atrial fibrillation: a systematic review. Circ Arrhythm Electrophysiol. 2013; 6: 1082-1088. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24243785