Angiotensin II type 1 receptor and the activation of Myosin Light-Chain Kinase and Protein Kinase C-βII: Mini Review

Main Article Content

Gerry A Smith*

Abstract

The involvement of the angiotensin II type 1 receptor in the Frank-Starling Law of the Heart, where the various activations are very limited, allows simple analysis of the kinase systems involved and thence extrapolation of the mechanism to that of angiotensin control of activation of cardiac and skeletal muscle contraction. The involvement of phosphorylation of the myosin light chain in the control of contraction is accepted but not fully understood. The involvement of troponin-I phosphorylation is also indicated but of unknown mechanism. There is no known signal for activation of myosin light chain kinase or Protein Kinase C-βII other than Ca2+/calmodulin but the former is constitutively active and thus has to be under control of a regulated inhibitor, the latter kinase may also be the same. Ca2+/calmodulin is not activated in Frank-Starling, i.e. there are no diastolic or systolic [Ca2+] changes. I suggest here that the regulated inhibition is by myosin light chain phosphatase and/or β-arrestin. Angiotensin activation, not involving G proteins. is by translocation of the β-arrestin from the sarcoplasm to the plasma membrane thus reducing its kinase inhibition action in the sarcoplasm. This reduced inhibition has been wrongly attributed to a mythical downstream agonist property of β-arrestin.

Article Details

Smith, G. A. (2020). Angiotensin II type 1 receptor and the activation of Myosin Light-Chain Kinase and Protein Kinase C-βII: Mini Review. Journal of Cardiology and Cardiovascular Medicine, 5(1), 024–028. https://doi.org/10.29328/journal.jccm.1001081
Mini Reviews

Copyright (c) 2020 Smith GA.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Cardiology and Cardiovascular Medicine is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Cardiology and Cardiovascular Medicine is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

van der Velden J, de Jong JW, Owen VJ, Burton PB, Stienen GJ, Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res. 2000; 46: 487–495. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10912459

Steinberg SF. Cardiac actions of protein kinase C isoforms. Physiology. 2012; 27: 130–139. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22689788

Chandra M, Dong WJ, Pan BS, Cheung HC, Solaro RJ. Effects of Protein Kinase A Phosphorylation on Signaling between CardiacTroponin I and the N-Terminal Domain of Cardiac Troponin C. Biochemistry; 1997; 36: 13305-13311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9341222

Kobayashi T, Dong WJ, Burkart EM, Cheung HC, Solaro RJ. Effects of Protein Kinase C Dependent Phosphorylation and a Familial Hypertrophic Cardiomyopathy-Related Mutation of Cardiac Troponin I on Structural Transition of Troponin C and Myofilament Activation. Biochemistry. 2004; 43: 5996-6004. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15147183

Smith GA. The Mechanisms of the Frank-Starling Law and Familial Cardiomyopathy are Different. The Function of Myosin Binding Protein-C is Retained on Myocyte Length Increase and Force Generated is Kinase controlled. OAT J Integr Cardiol. 2019; 5.

Smith GA. Calcium, Actomyosin Kinetics, Myosin Binding Protein-C and Hypertrophic Cardiomyopathy. OAT J Integr Cardiol. 2019; 5.

Solaro RJ, Shiner JS. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils. Circ Res. 1972; 39: 8–14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/132310

Lionne C1, Brune M, Webb MR, Travers F, Barman T. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases. FEBS Letters. 1995; 364: 59-62. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7750544

Lymn RW, Taylor EW. Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry. 1970; 9: 2975–2983. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/4248809

Pan BS, Solaro RJ. Calcium-binding properties of troponin-C in detergent skinned heart muscle fibers. J Biol Chem. 1987; 262: 7839-7849. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3584144

Morimoto S, Ohtsuki I. Ca2+ binding to cardiac troponin-C in the myofilament lattice and its relation to myofibrillar ATPase activity. Eur J Biochem. 1994; 226: 597-602. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8001574

Kampourakis T, Yan Z, Gautel M, Sun YB, Irving M. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc Natl Acad Sci U S A. 2014; 111: 18763–18768. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25512492

Hofmann PA, Hartzell HC, Moss RL. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol. 1991; 97: 1141–1463. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1678777

Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M. et al. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife. 2017; 6: e24081. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28229860

de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, et al. Myofilament length dependent activation. J Mol Cell Cardiol. 2010; 48: 851–858. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20053351

Akella AB, Su H, Sonnenblick EH, Rao VG, Gulati J. The Cardiac Troponin C Isoform and the Length Dependence of Ca2+ Sensitivity of Tension in Myocardium. J Mol Cell Cardiol. 1997; 29: 381–389. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9040052

Tachampa K, Wang H, Farman GP, de Tombe PP. Cardiac Troponin I Threonine 144. Role in Myofilament Length–Dependent Activation. Circ Res. 2007; 101: 1081-1083. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17975107

Wang H, Grant JE, Doede CM, Sadayappan S, Robbins J, et al. PKC-βII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. J Mol Cell Cardiol. 2006; 41: 823-833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17010989

Blobe GC, Stribling DS, Fabbro D, Stabel S, Hannun YA. Protein Kinase C-βII specifically binds to and is activated by F-actin. J Biol Chem. 1996; 271: 26: 15823–15830. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8663149

Abraham DM, Davis RT, Warren CM, Mao L, Wolska BM. et al. β-Arrestin mediates the Frank–Starling mechanism of cardiac contractility. Proc Natl Acad Sci U S A. 2016; 113: 50: 14426–14431. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27911784

Ponnam S, Sevrieva I, Sun YB, Irving M, Kampourakis T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. PNAS. 2019; 116: 15485-15494.

Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, et al. The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2007; 1768: 913-922.

Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Frontiers in Pharmacology. 2019; 10: 125. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389790/

Wolf H, Hofmann F. Purification of myosin light chain kinase from bovine cardiac muscle. Proc Natl Acad Sci U S A. 1980; 77: 5852-5855. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6934518

Walsh MP, Vallet B, Autric F, Demaille JG. Purification and Characterization of Bovine Cardiac Calmodulin dependent Myosin Light Chain Kinase. J Biol Chem. 1979; 254: 12136-12144. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/500701

Wilden U, Hall SW, Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986; 83: 1174–1178. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3006038

Wilden U, Wüst E, Weyand I, Kühn H. Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett. 1986; 207: 292–295. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3770202

Turu G, Balla A, Hunyady L. The Role of b-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne). 2019; 10: 519. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31447777

Gagnon L, Yubo Cao Y, Cho A, Sedki D, Huber T, et al. Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor. J Biol Chem. 2019; 294; 17409-17420.

Ishikawa Y, Kurotani R. Cardiac Myosin Light Chain Kinase, A New Player in the Regulation of Myosin Light Chain in the Heart. Circ Res. 2008; 102: 516-518. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18340016

Stelzer JE, Patel JR, Moss RL. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol. 2006; 128: 261–272. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16908724

Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol. 2016; 101: 35–43. PubMed:

Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, et al. Cardiac myosin-binding protein C and troponin-I phosphorylation independently modulate myofilament length-dependent activation. J Biol Chem. 2015; 290: 29241–29249. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26453301

Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol. 2016; 7: Article 38. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753332/

Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015; 569: 14–20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26074085

Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, et al. Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. J Biol Chem. 2010; 285: 40819-40829. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003383/