Diagnosis of critical congenital heart defects in Iceland 2000-2014

Main Article Content

Hallfríður Kristinsdóttir
Þórður Þórkelsson
Hildur Harðardóttir
Gylfi Óskarsson*

Abstract

Critical congenital heart defects (CCHDs) are preferably diagnosed prenatally or soon after birth. Late diagnosis has been related to poorer prognosis. The aim of this study is to assess when CCHDs are diagnosed in Iceland and whether late diagnosis is a problem. All live born children in Iceland and foetuses diagnosed with CCHDs during the years 2000-2014 were included. CCHD was defined as a defect requiring intervention or causing death in the first year of life, or leading to abortion.


The total number of pre- and postnatal diagnosis of CCHDs was 188. Prenatal diagnosis was made in 69 of 188 (36.7%). Of 69 diagnosed prenatally 33 were terminated due to CCHD. Of the 155 live born children with CCHD, 36 (23.2%) had a prenatal diagnosis and 100 (64.5%) were diagnosed shortly after birth, before discharge from birth facility. 19 children (12.3%) were diagnosed late, that is after discharge from birth facility. Coarctation of the aorta was the most common CCHD diagnosed late (6/19).


Prenatal screening and newborn examination give good results in diagnosis of CCHDs in Iceland. Late diagnosis are relatively few, but both the number of prenatally diagnosed CCHDs and CCHDs diagnosed shortly after birth can be further improved.

Article Details

Kristinsdóttir, H., Þórkelsson, Þórður, Harðardóttir, H., & Óskarsson, G. (2019). Diagnosis of critical congenital heart defects in Iceland 2000-2014. Journal of Cardiology and Cardiovascular Medicine, 4(3), 177–181. https://doi.org/10.29328/journal.jccm.1001062
Research Articles

Copyright (c) 2019 Óskarsson G, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The Journal of Cardiology and Cardiovascular Medicine is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Cardiology and Cardiovascular Medicine is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, et al. Birth Prevalence of Congenital Heart Disease Worldwide: A Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2011; 58: 2241-2247. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22078432

Leirgul E, Fomina T, Brodwall K, Greve G, Holmstrøm H, et al. Birth prevalence of congenital heart defects in Norway 1994-2009-A nationwide study. Am Heart J. 2014; 168: 956-964. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25458661

Stephensen SS, et al. Nýgengi og greining meðfæddra hjartagalla á Íslandi 1990-1999. Læknablaðið. 2002; 88: 281-287.

Ewer AK, Middleton LJ, Furmston AT, Bhoyar A, Daniels JP, et al. Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study. Lancet. 2011; 378: 785-794. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21820732

Dawson AL, Cassell CH, Riehle-Colarusso T, Grosse SD, Tanner JP, et al. Factors Associated With Late Detection of Critical Congenital Heart Disease in Newborns. Pediatrics. 2013; 132: E604-E611. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23940249

Liberman RF, Getz KD, Lin AE, Higgins CA, Sekhavat S, et al. Delayed Diagnosis of Critical Congenital Heart Defects: Trends and Associated Factors. Pediatrics. 2014; 134: E373-E381. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25070301

Wren C, Reinhardt Z, Khawaja K. Twenty-year trends in diagnosis of life threatening neonatal cardiovascular malformations. Arch Dis Child Fetal Neonatal Ed. 2008; 93: F33-F35. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17556383

Mouledoux JH, Walsh WF. Evaluating the Diagnostic Gap: Statewide Incidence of Undiagnosed Critical Congenital Heart Disease Before Newborn Screening With Pulse Oximetry. Pediatr Cardiol. 2013; 34: 1680-1686. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23595939

Brown KL, Ridout DA, Hoskote A, Verhulst L, Ricci M, et al. Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart. 2006; 92: 1298-1302. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16449514

Bonnet D, Coltri A, Butera G, Fermont L, Le Bidois J, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation. 1999; 99: 916-918. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10027815

Calderon J, Angeard N, Moutier S, Plumet MH, Jambaqué I, et al. Impact of Prenatal Diagnosis on Neurocognitive Outcomes in Children with Transposition of the Great Arteries. J Pediatr. 2012; 161: 94-98. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22284567

van Velzen CL, Haak MC, Reijnders G, Rijlaarsdam ME, Bax CJ, et al. Prenatal detection of transposition of the great arteries reduces mortality and morbidity. Ultrasound Obstet Gynecol. 2015; 45: 320-325. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25297053

Mellander M, Sunnegardh J. Failure to diagnose critical heart malformations in newborns before discharge--an increasing problem? Acta Paediatr. 2006; 95: 407-413. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16720486

Peterson C, Ailes E, Riehle-Colarusso T, Oster ME, Olney RS, et al. Late Detection of Critical Congenital Heart Disease among US Infants Estimation of the Potential Impact of Proposed Universal Screening Using Pulse Oximetry. Jama Pediatrics. 2014; 168: 361-370. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24493342

de-Wahl Granelli A, Wennergren M, Sandberg K, Mellander M, Bejlum C, et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ. 2009; 338: 3037. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19131383

Thangaratinam S, Brown K, Zamora J, Khan KS, Ewer AK. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet. 2012; 379: 2459-2464. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22554860

Riede FT, Wörner C, Dähnert I, Möckel A, Kostelka M, et al. Effectiveness of neonatal pulse oximetry screening for detection of critical congenital heart disease in daily clinical routine-results from a prospective multicenter study. Eur J Pediatr. 2010; 169: 975-981. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20195633

Meberg A, Andreassen A, Brunvand L, Markestad T, Moster D, et al. Pulse oximetry screening as a complementary strategy to detect critical congenital heart defects. Acta Paediatr. 2009; 98: 682-686. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19154526

Freeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, et al. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998; 80: 213-217. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9843040

Irving CA, Chaudhari MP. Cardiovascular abnormalities in Down's syndrome: spectrum, management and survival over 22 years. Arch Dis Child. 2012; 97: 326-330. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21835834

Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013; 41: 348-359. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23460196

Chew C, Halliday JL, Riley MM, Penny DJ. Population-based study of antenatal detection of congenital heart disease by ultrasound examination. Ultrasound Obstet Gynecol. 2007; 29: 619-624. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17523161

Carvalho JS, Mavrides E, Shinebourne EA, Campbell S, Thilaganathan B. Improving the effectiveness of routine prenatal screening for major congenital heart defects. Heart. 2002; 88: 387-391. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12231598

Hoashi T, Miyata H, Murakami A, Hirata Y, Hirose K, et al. The current trends of mortality following congenital heart surgery: the Japan Congenital Cardiovascular Surgery Database. Interact Cardiovasc Thorac Surg. 2015; 21: 151-156. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25924867

Rogers L, Brown KL, Franklin RC, Ambler G, Anderson D, et al. Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The UK PRAiS2 Model. Ann Thorac Surg. 2017; 104: 211-219. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28318513