Influence of Histidine on the contractility and adrenaline inotropic effect in the experiments with myocardium of right ventricular of Non pregnant and Pregnant Rats

Main Article Content

Victor Tsirkin*
Alexander Nozdrachev
Julia Korotaeva
Grigorij Khodyrev

Abstract

It was investigated contractility and adrenoreactivity of intact myocardium strips of right ventricular in experiment with 60 rats. They were assessed by the force of induce contraction and its changes under the influence of adrenaline (10-9 or 10-5 g / ml). Found that these indicators do not depend on the phases of the estrous cycle and the presence of pregnancy. Histidine (10-10-10-4 g / ml) did not increase the response to adrenalin (10-9 g / ml), but increased the force of the contractions in rats in progesterone dominance (trend) and pregnancy (statistically significant). Against the background of propranolol (10-8 g / mL) or atenolol (10-8, 10-6 g / mL), adrenaline (10-5 g / mL) instead of increasing the force of contraction reduced it (probably due to activation of beta3-, alpha1 - and alpha1 a2- adrenergic receptors), and histidine (10-4 g / mL) prevented this reduction, but does not restore full ability of adrenaline to exert a positive inotropic effect. On the background of nicergoline (10-8 g / mL or nicergoline and propranolol (10-8 g / mL), adrenaline (10-5 g / mL) did not alter the force of contraction, and histidine (10-4 g/mL) restore ability of adrenaline to exert a positive inotropic effect but only in the experiments with nicergoline. Concluded that histidine increases the efficiency of the activation of all three (beta1-, beta2- and beta3-) populations of myocardial beta-adrenoceptoprs, including at lower by adrenergic blockers. Therefore, histidine proposed as an antagonist of beta-adrenergic blockers and as resensitizator of these receptors.


Core Tip: In the experiments with strips of the right ventricle of 40 nonpregnant and 20 pregnant rats histidine (10-10-10-4 g /mL) did not increase the response to adrenaline (10-9 g / ml), but increased the force of contractions in pregnant rats. On the background of propranolol (10-8 g / mL) or atenolol (10-8, 10-6 g / mL), adrenaline (10-5g/mL) showed a negative inotropic effect, and histidine (10-4 g / mL) prevented it, but does not restore the ability of adrenaline to show positive inotropic effect,. i.e histidine exhibits the properties of the antagonist of beta-blockers and of resensitizator of beta-adrenoceptors

Article Details

Tsirkin, V., Nozdrachev, A., Korotaeva, J., & Khodyrev, G. (2018). Influence of Histidine on the contractility and adrenaline inotropic effect in the experiments with myocardium of right ventricular of Non pregnant and Pregnant Rats. Journal of Cardiology and Cardiovascular Medicine, 3(3), 084–103. https://doi.org/10.29328/journal.jccm.1001030
Research Articles

Copyright (c) 2018 Tsirkin V, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The Journal of Cardiology and Cardiovascular Medicine is committed in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. In order to use the Open Access paradigm to the maximum extent in true terms as free of charge online access along with usage right, we grant usage rights through the use of specific Creative Commons license.

License: Copyright © 2017 - 2025 | Creative Commons License Open Access by Journal of Cardiology and Cardiovascular Medicine is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at Heighten Science Publications Inc.

With this license, the authors are allowed that after publishing with the journal, they can share their research by posting a free draft copy of their article to any repository or website.

Compliance 'CC BY' license helps in:

Permission to read and download
Permission to display in a repository
Permission to translate
Commercial uses of manuscript

'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license. 

Nozdrachev AD, Tumanova TV, Dvoryanskij SA, Tsirkin VI, Darmov IV, et al. Activity of a series of amino acids as potential sensitizers of smooth muscle beta-receptors. Dokl Akad Nauk. 1998; 363: 133-136. Ref.: https://goo.gl/bxgV9L

Sizova EN, Tsirkin VI, Tumanova TV. Influence of amino acids alimentary on contracts ability in beta-adreno- and M-cholinoreactivity of smooth muscles. Vopr Pitan 2008; 77: 26-32. Ref.: https://goo.gl/YJ3GC4

Tumanova TV, Sizova EN, Tsirkin VI. Ability of L-histidine to decrease desensitization of the myometrium to epinephrine. Bull Exp Biol Med. 2004; 138: 321-324. Ref.: https://goo.gl/zVrZct

Sizova EN, Tsirkin VI, Kostyaev AA. Effect of ozone exposure on contractile activity and chemoreactivity of uterus horns longitudinal muscles of nonpregnant rats. Ross Fiziol Zh Im I M Sechenova. 2003; 89: 427-435. Ref.: https://goo.gl/FXJ6Re

Toropov AL, Nozdrachev AD, Tsirkin VI. Investigation of the mechanism of action of endogenous sensitizer of beta-adrenoceptor (ESBAR) and its analogs. Vestnik Sankt-Peterburgskogo universiteta, Ser. 3 (biologiya). 2011; 427-423.

Tsirkin VI, Nozdrachev AD, Toropov AL. An endogenous sensitizer of β-adrenergic receptors and its analogs in the experiments with rat myometrium reduce the β-adrenoblocking effect of obzidan. Dokl Biol Sci. 2010; 435: 375-380. Ref.: https://goo.gl/G1bzAb

Penkina YuA, Nozdrachev AD, Tsirkin VI. Effect of human blood serum, histidine, tryptophan, tyrosine, mildronat and lysophosphatidylcholine on inotropic effect of adrenaline in the experiments with the frog and rat myocardium. Vestnik Sankt-Peterburgskogo universiteta. Seriya 3 (Biologiya). 2008; 1: 55-68.

Tsirkin VI, Sizova EN, Kajsina IG, Kononova TN, Trukhin AN, et al. Heart rate variability during puberty and pregnancy. Rossijskij vestnik akushera-ginekologa. 2004; (2): 4-9.

Korotaeva KN, Nozdrachev AD, Vyaznikov VA, Tsirkin VI. Effect of tyrosine, histidine, tryptophan, mildronat and human serum on the amplitude of caused contractions of human cardiomyocytes and inotropic effect of adrenaline. Vestnik Sankt-Peterburgskogo universiteta. Ser. 3 (biologiya). 2011; 2: 45-57.

Korotaeva KN, Tsirkin VI, Vyaznikov VA. Positive inotropic effect of tyrosine, histidine, and tryptophan in experiments on isolated human myocardium. Bull Exp Biol Med. 2012; 153: 51-53. Ref.: https://goo.gl/XW77dK

Trukhin AN, Tsirkin VI, Sizova EN. Histidine increases beta-adrenoreactivity of myocardium in frogs. Bull Exp Biol Med. 2004; 138: 123-126. Ref.: https://goo.gl/BBxMsV

Wehling M. [Pharmacology of beta blockers and their significance for therapy of hypertension]. [Article in German]. 2002; 27 (Suppl 1): 16-25. Ref.: https://goo.gl/9t7xQx

Siryk-Bathgate A, Dabul S, Lymperopoulos A. Current and future Gprotein-coupled receptor signaling targets for heart failure therapy. Drug Des Devel Ther. 2013; 7: 1209-1222. Ref.: https://goo.gl/T9d9fe

Shechtman MM. Guide extragenital pathology in pregnant women. Moskva: Triad. 2011; 896.

Elzwiei F,Bassien-Capsa V,St-Louis J,Chorvatova A. Regulationof thesodium. Exp Physiol. 2013; 98: 183-192.

Virgen-Ortiz A, Marin JL, Elizalde A, Castro E, Stefani E, Toro L, Muñiz J. Passive mechanical properties of cardiac tissues in heart hypertrophy during pregnancy. J Physiol Sci. 2009; 59: 391-396. Ref.: https://goo.gl/BfFM4D

Kirshenblat YaD. Workshop on endocrinology. Moskva: Vysshaya shkola, 1969. 256.

Dyban AP, Puchkov VF, Baranov VS. Laboratory mammals: mouse (Mus musculus), rat (Rattus norvegicus), rabbit (Oryctolagus cuniculus), hamster (Cricetus grisous) // Ob"ekty biologii razvitiya. Moskva: Nauka. 1975; S. 505-566. Ref.: https://goo.gl/PDgjSq

Glantz S. Biomedical Statistics. Moskva: Praktika. 1999; 459.

Flores A, Velasco J, Gallegos AI, Mendoza FD, Everardo PM, et al. Acute effects of unilateral sectioning the superior ovariannerveofratswith unilateral ovariectomy on ovarian hormones (progesterone, testosterone andestradiol) levels vary during the estrous cycle. Reprod Biol Endocrinol. 2011; 9: 34. Ref.: https://goo.gl/RKjZj1

Ouzounian JG, Elkayam U. Physiologic changes during normal pregnancy and delivery. Cardiol Clin. 2012; 30: 317-329. Ref.: https://goo.gl/fg78Ht

Dmitrieva SL, Khlybova SV, Khodyrev GN, Tsirkin VI. Condition of the autonomic nervous system in women on the eve of term labor, in the latent phase of labor and the postpartum period and the pattern of labor contractile activity. Rossijskij vestnik akushera-ginekologa. 2012; 2: 12-17.

Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, et al. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol .2012; 113: 1253-1259. Ref.: https://goo.gl/cBLiV8

Baevsky RM. Analysis of HRV in space medicine Fiziologiya cheloveka. 2002; 28: 70-82.

Dmitrieva SL, Khlybova SV, Khodyrev GN, Tsirkin VI. Heart rate variability at different stages of gestation Kirov: KOGUZ Medicinskij informacionno-analiticheskij centr. 2013; 1-132.

Khlybova SV, Tsirkin VI, Dvoryanskij SA, Makarova IA, Trukhin AN. Heart rate variability in normal and complicated pregnancies. Fiziol Cheloveka. 2008; 34: 97-105. Ref.: https://goo.gl/CVePfj

Khodyrev GN, Nozdrachev AD, Dmitrieva SL, Khlybova SV, Tsirkin VI, et al. Heart rate variability in women at different stages of the reproductive process. Vestnik Sankt-Peterburgskogo universiteta. Seriya 3. (biologiya). 2013; 2: 70-86.

Pöyhönen-Alho M, Viitasalo M, Nicholls MG, Lindström BM, Väänänen H, et al. Imbalance of the autonomic nervous system at night in women with gestational diabetes. Diabet Med. 2010; 7: 988-994. Ref.: https://goo.gl/uKwviT

Avakian ON. Pharmacological regulation of adrenergic function. Moskva: Medicina. 1988; 256.

Bralet J, Didier J, Moreau D, Opie LH, Rochette L. Effect of alpha-adrenoceptor antagonists (phentolamine, nicergoline and prazosin) on reperfusion arrhythmias and noradrenaline release in perfused rat heart. Br J Pharmacol. 1985; 84: 9-18. Ref.: https://goo.gl/73yVjb

Boismare F,Moore N,Decourt S,Paux G,Saligaut C,Chretien P. Potentiationby analpha-adrenolyticagent,nicergoline, of the ardiac effects of propranolol. Methods Find Exp Clin Pharmacol 1983; 5: 83-88. Ref.: https://goo.gl/DQ3p2K

McGraw DW, Liggett SB. Molecular mechanisms of beta2-adrenergic receptor function and regulation. Proc Am Thorac Soc. 2005; 2: 292-296. Ref.: https://goo.gl/tTket5

Kissling G, Blickle B, Ross C, Pascht U, Gulbins E. alpha1-adrenoceptor-mediated negative inotropy of adrenaline in rat myocardium. J Physiol. 1997; 499 (Pt 1): 195-205. Ref.: https://goo.gl/WbZTpX

Chinkin AS. alpha1-adrenergic receptors of the heart Pedagogiko-psihologicheskie i mediko-biologicheskie problemy fizicheskoj kul'tury i sporta. 2006; 1: 1-30.

Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci. 2004; 25: 413-422. Ref.: https://goo.gl/K7bg91

Pérez-Schindler J,Philp A,Hernandez-Cascales J. Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur J Pharmacol. 2013; 698: 39-47. Ref.: https://goo.gl/tQjjHU

Gauthier C,Rozec B,Manoury B,Balligand JL. Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep. 2018; 184-192. Ref.: https://goo.gl/KS3hah

Niu X,Watts VL,Cingolani OH,Sivakumaran V,Leyton-Mange JS,et al. Cardioprotective effectof beta3-adrenergic receptor agonism:roleofneuronal nitric oxide synthase. J Am Coll Cardiol. 2012; 59: 1979-1987. Ref.: https://goo.gl/VMnTSA

Chu C, Thai K, Park KW, Wang P, Makwana O, et al. Intraventricular and interventricular cellular heterogeneity of inotropic responses to α1-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2013; 304: H946-H953. Ref.: https://goo.gl/VsQySQ

Kim JS, Kang HS, Kim JS. alpha1-adrenoceptor-mediated negative inotropic effect caused by intracellular ionic activities in guinea-pig papillary muscle. J Vet Med A Physiol Pathol Clin Med. 2005; 52: 498-505. Ref.: https://goo.gl/zevjb2

Porter AC, Svensson SP, Stamer WD, Bahl JJ, Richman JG, et al. Alpha-2 adrenergic receptors stimulate actin organization in developing fetal rat cardiac myocytes. Life Sci. 2003; 72: 1455-1466. Ref.: https://goo.gl/jh5gEc

Gilsbach R, Hein L. Are the pharmacology and physiology of α-adrenoceptors determined by α-heteroreceptors and autoreceptors respectively? Br J Pharmacol. 2012; 165: 90-102. Ref.: https://goo.gl/USnFRz

Indolfi C, Piscione F, Villari B, Russolillo E, Rendina V, et al. Role of alpha 2-adrenoceptors in normal and atherosclerotic human coronary circulation. Circulation. 1992; 86: 1116-1124. Ref.: https://goo.gl/QcBi8z

Woodiwiss AJ, Honeyman TW, Fenton RA, Dobson JG Jr. Adenosine A2a-receptor activationenhances cardiomyocyte shortening via Ca2+-independent and dependent mechanisms. Am J Physiol. 1999; 276 : H1434- H1441. Ref.: https://goo.gl/Qpch85

Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, et al. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res. 2003; 59: 288-296. Ref.: https://goo.gl/wkdLf3

Sillence MN, Hooper J, Zhou GH, Liu Q, Munn KJ. Characterization of porcine beta1- and beta2-adrenergic receptors in heart, skeletal muscle, andadipose tissue, and theidentificationof anatypical beta-adrenergic binding site. J Anim Sci. 2005; 83: 2339-2348. Ref.: https://goo.gl/1dC5d7

Odnoshivkina YG, Petrov AM, Zefirov AL. The effects of β2 -adrenoreceptor activation on the contractility, Ca-signals and nitric oxide production in the mouse atria. Acta Naturae. 2011; 3: 103-112.

Pott C, Steinritz D, Napp A, Bloch W, Schwinger RH, Brixius K. [On the function of beta3- adrenoceptors in the human heart: signal transduction, inotropic effect and the rapeutic prospects]. [Article in German] Wien Med Wochenschr. 2006; 156: 451-458. Ref.: https://goo.gl/Dc375U v

Gorini C, Jameson H, Woerman AL, Perry DC, Mendelowitz D. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways. J Appl Physiol. 2013; 115: 415-421. Ref.: https://goo.gl/on96FX

Winblad B, Fioravanti M, Dolezal T, Logina I, Milanov IG, et al. Therapeutic use of nicergoline. Clin Drug Investig. 2008; 28: 533-552. Ref.: https://goo.gl/BM2hfM

Sizova EN, Tsirkin VI. The physiological characteristics of the endogenous modulators of beta-adreno- and M-cholinoreactivity. Kirov: Vyatskij social'no-ehkonomicheskij institute. 2006: 1-183.

Herrick-Davis K. Functional significance of serotonin receptor dimerization. Exp Brain Res. 2013; 230: 375-386. Ref.: https://goo.gl/YyBS9A

Brinks H, Boucher M, Gao E, Chuprun JK, Pesant S, et al. Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reper fusion injury via pro- and anti-apoptotic mechanisms. Circ Res. 2010; 107: 1140-1149. Ref.: https://goo.gl/pL8pWs

Wang Q,Zhao J,Brady AE,Feng J,Allen PB,et al. Spinophilinblocksarrestinactionsin vitroandin vivoatG protein-coupled receptors. Science2004; 304: 1940-1944. Ref.: https://goo.gl/Cu7ZpH

Lopatin IuM, Dronova EP. [Clinical-pharmacoeconomical aspects of ß-adreno blockers use in patients with ischemic heart disease undergoing coronary artery bypass grafting]. [Article in Russian] Kardiologiia. 2010; 50: 15-22. Ref.: https://goo.gl/pf2id8

Gordeev IG, Liusov VA, Il'ina EE, Baiandin NL, Kuznechevskiĭ FV. [Derangements of contractility of left ventricular myocardium in patients subjected to coronary bypass surgery. Methods of their correction]. [Article in Russian] Kardiologiia. 2007; 47: 22-24. Ref.: https://goo.gl/eCaHWW

Guggilam A, Hutchinson KR, West TA, Kelly AP, Galantowicz ML, et al. In vivo and in vitro cardiac responses to beta-adrenergic stimulation involume-overload heart failure. J Mol Cell Cardiol. 2013; 57: 47-58. Ref.: https://goo.gl/SZpmjE