Abstract

Research Article

The Renin-Angiotensin System: Alamandine is reduced in patients with Idiopathic Pulmonary Fibrosis

Taís Salvi Sipriani, Robson Augusto Souza dos Santos and Katya Rigatto*

Published: 20 November, 2019 | Volume 4 - Issue 3 | Pages: 210-215

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive disease without treatment that leads to death. Therefore, to control its progression to pulmonary hypertension is still a challenge. Moreover, there is no study that has investigated the Renin-Angiotensin System in patients with IPF.

Objective: Verify the plasma concentrations of Angiotensin I, Angiotensin II (AngII), Angiotensin-(1-7) [Ang- (1-7)] and Alamandine in patients with IPF.

Methods: Ten IPF patients, with or without PH, were included, and ten controls matched by sex and age. Quantitative plasma peptide concentrations (PPC) were expressed as mean and standard deviation or median and interquartile range. The Student Newman-Keuls t test was used for parametric data, Mann-Whitney for nonparametric data and, to compare proportions, the Fisher exact test was performed. The associations between clinical variables and the PPC were evaluated by Pearson or Spearman correlation coefficients. A p ≤ 0.05 was considered statistically significant.

Results: The Alamandine plasma concentration was significantly (365%) lower in the IPF group and positively associated (r = 0.876) with pulmonary artery pressure (PAP). In addition, only in control group, the forced expiratory volume (FEV1%) was positively associated (p = 0.758) with Ang-(1-7).

Conclusion: This study showed, for the first time, that there is a decrease in Alamandine participation in patients with IPF. The ACE-AngII-AT1 axis may be more active in this disease. In addition, our results suggest that Alamandine might be compensating the increase in PAP, as well as the Ang-(1-7) is improving the forced expiratory volume.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001070 Cite this Article Read Full Article PDF

Keywords:

Idiopathic-Pulmonary-Fibrosis; Alamandine; Renin-Angiotensin System

References

  1. Navaratnam V, Fleming KM, West J, Smith CJ, Jenkins RG, et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax. 2011; 66: 462-467. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21525528
  2. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006; 174: 810-816. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16809633
  3. Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society, et al. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001; 134: 136-151. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11177318
  4. Yan Z, Kui Z, Ping Z. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun Rev. 2014; 13: 1020-1025. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25182202
  5. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011; 183: 788-824. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21471066
  6. Lettieri CJ, Nathan SD, Barnett SD, Ahmad S, Shorr AF. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest. 2006; 129: 746-752. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16537877
  7. Woodcock HV, Maher TM. The treatment of idiopathic pulmonary fibrosis. F1000Prime Rep. 2014; 6: 16. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24669297
  8. Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, et al. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008; 295: L178-185. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18441099
  9. Molteni A, Wolfe LF, Ward WF, Ts'ao CH, Molteni LB, et al. Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des. 2007; 13: 1307-1316. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17506716
  10. Uhal BD, Kim JK, Li X, Molina-Molina M. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des. 2007; 13: 1247-1256. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17504233
  11. Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012; 44: 465-468. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22155301
  12. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000; 52: 11-34. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10699153
  13. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007; 292: C82-97. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16870827
  14. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997; 30: 535541. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9322978
  15. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003; 100: 8258-8263. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12829792
  16. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005; 289: H1560-1566. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15951342
  17. Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, et al. The angiotensin-converting enzyme 2/angiogenesis-(17)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2010; 182: 1065-1072. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20581171
  18. Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol. 2011; 301: L269-274. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21665960
  19. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013; 112: 1104-1111. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23446738
  20. Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015; 9: 217-237. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26275770
  21. ATS statement: guidelines for the sixminute walk test. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166: 111-117. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12091180
  22. Alakhras M, Decker PA, Nadrous HF, Collazo-Clavell M, Ryu JH. Body mass index and mortality in patients with idiopathic pulmonary fibrosis. Chest. 2007; 131: 1448-1453. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17400656
  23. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996; 76: 839-885. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8757790
  24. Davis PB. Cystic fibrosis since 1938. Am J Respir Crit Care Med. 2006; 173: 475-482. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16126935
  25. Stark LJ, Powers SW. Behavioral aspects of nutrition in children with cystic fibrosis. Curr Opin Pulm Med. 2005; 11: 539-542. https://www.ncbi.nlm.nih.gov/pubmed/16217182
  26. Hsieh MJ, Yang TM, Tsai YH. Nutritional supplementation in patients with chronic obstructive pulmonary disease. J Formos Med Assoc. 2016; 115: 595-601. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26822811
  27. Königshoff M, Wilhelm A, Jahn A, Sedding D, Amarie OV, et al. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. Am J Respir Cell Mol Biol. 2007; 37: 640-650. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17630322
  28. Li X, Molina-Molina M, Abdul-Hafez A, Ramirez J, Serrano-Mollar A, et al. Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2006; 291: L887-895. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16844946
  29. Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. Am J Pathol. 2003; 163: 2523-2530. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14633624
  30. Meng Y, Meng Y, Li X, Cai SX, Tong WC, et al. [Perindopril and losartan attenuate bleomycin A5-induced pulmonary fibrosis in rats]. Nan Fang Yi Ke Da Xue Xue Bao. 2008; 28: 919-924. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18583228
  31. Mohammadi-Karakani A1, Ghazi-Khansari M, Sotoudeh M. Lisinopril ameliorates paraquat-induced lung fibrosis. Clin Chim Acta. 2006; 367: 170-174. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16458281
  32. Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol. 2000; 279: L143-151. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10893213
  33. Jiang T, Tan L, Gao Q, Lu H, Zhu XC, et al. Plasma angiotensin-(1-7) is a potential biomarker for Alzheimer's disease. Curr Neurovasc Res. 2016. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26907614
  34. Etelvino GM, Peluso AA, Santos RA. New components of the reninangiotensin system: alamandine and the MAS-related G protein-coupled receptor D. Curr Hypertens Rep. 2014; 16: 433. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24760442
  35. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol. 2007; 292: H736-742. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17098828

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?