Abstract

Research Article

Role of novel cardiac biomarkers for the diagnosis, risk stratification, and prognostication among patients with heart failure

Jennifer Miao, Joel Estis, Yan Ru Su, John A Todd and Daniel J Lenihan*

Published: 22 August, 2019 | Volume 4 - Issue 2 | Pages: 103-109

Background: Current guidelines for diagnosis and management of heart failure (HF) rely on clinical findings and natriuretic peptide values, but evidence suggests that recently identified cardiac biomarkers may aid in early detection of HF and improve risk stratification. The aim of this study was to assess the diagnostic and prognostic utility of multiple biomarkers in patients with HF and left ventricular systolic dysfunction (LVSD).

Methods: High-sensitivity cardiac troponin I (cTnI), N-terminal pro b-type natriuretic peptide (NT-proBNP), interleukin-6 (IL-6), endothelin-1 (ET-1), pro-matrix metalloproteinase-9 (pMMP-9), and tumor necrosis factor-alpha (TNF-α) were measured using single-molecule counting technology in 200 patients with varying stages of HF. Plasma detection with cross-sectional associations of biomarkers across all HF stages, and advanced-therapy and transplant-free survival were assessed using multivariate analysis and Cox regression analyses, respectively.

Results: NTproBNP, pMMP-9, IL-6 were elevated in early, asymptomatic stages of HF, and increased with HF severity. Higher circulating levels of combined IL-6, NTproBNP, and cTnI predicted significantly worse survival at 1500-day follow-up. Cox regression analysis adjusted for ACC/AHA HF stages demonstrated that a higher concentration of IL-6 and cTnI conferred greater risks in terms of time to death, implantation of left ventricular assist device (LVAD), or heart transplantation.

Conclusion: Biomarkers of inflammation, LV remodeling, and myocardial injury were elevated in HF and increased with HF severity. Patients had a significantly higher risk of serious cardiac events if multiple biomarkers were elevated. These findings support measuring NTproBNP, cTnI and IL-6 among patients with HF and LVSD for diagnostic and prognostic purposes.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001049 Cite this Article Read Full Article PDF

References

  1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016; 13: 368-378. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26935038
  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association. Circulation. 2016; 133: e38-360. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26673558
  3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013; 128: e240-327. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23741058
  4. Khunti K, Baker R, Grimshaw G. Diagnosis of patients with chronic heart failure in primary care: usefulness of history, examination, and investigations. Br J Gen Pract. 2000; 50: 50-54. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10695070
  5. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. Jama. 1989; 261: 884-888. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2913385
  6. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017; 70: 776-803. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28461007
  7. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2017; 135: e1054-e1091. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28446515
  8. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, et al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010; 55: 2129-2137. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20447537
  9. Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006; 113: 2089-2096. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16636176
  10. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002; 90: 520-530. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11909815
  11. Milo-Cotter O, Cotter-Davison B, Lombardi C, Sun H, Bettari L, et al. Neurohormonal activation in acute heart failure: results from VERITAS. Cardiology. 2011; 119: 96-105. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21912122
  12. Tsutamoto T, Wada A, Hayashi M, Tsutsui T, Maeda K, et al. Relationship between transcardiac gradient of endothelin-1 and left ventricular remodelling in patients with first anterior myocardial infarction. Eur Heart J. 2003; 24: 346-355. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12581682
  13. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000; 106: 55-62. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10880048
  14. Gaggin H, Januzzi J. Cardiac biomarkers and heart failure. J Am Coll Cardiol. 2015.
  15. Jackson K, Rao V, Hanberg J, et al. Inflammation and Cardio-Renal Interactions in Heart Failure: A Potential Role for Interleukin-6. Journal of Cardiac Failure. 2017; 23: S25.
  16. Chen O, Patel J, Mohamed E, Greene M, Moskovits N, et al. Immunoregulatory role of cytokines in congestive heart failure. Microinflammation. 2014; 1.
  17. Fedacko J, Singh RB, Gupta A, Hristova K, Toda E, et al. Inflammatory mediators in chronic heart failure in North India. Acta Cardiol. 2014; 69: 391-398. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25181914
  18. Pudil R, Tichy M, Andrys C, Rehácek V, Bláha V, et al. Plasma interleukin-6 level is associated with NT-proBNP level and predicts short- and long-term mortality in patients with acute heart failure. Acta Medica (Hradec Kralove). 2010; 53: 225-228. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21400981
  19. Hamzic-Mehmedbasic A. Inflammatory Cytokines as Risk Factors for Mortality After Acute Cardiac Events. Med Arch. 2016; 70: 252-255. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27703283
  20. Lassus JP, Harjola VP, Peuhkurinen K, Sund R, Mebazaa A, et al. Cystatin C, NT-proBNP, and inflammatory markers in acute heart failure: insights into the cardiorenal syndrome. Biomarkers. 2011; 16: 302-310. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21417622
  21. Orus J, Roig E, Perez-Villa F, Paré C, Azqueta M, et al. Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant. 2000; 19: 419-425. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10808148
  22. Miettinen KH, Lassus J, Harjola VP, Siirilä-Waris K, Melin J, et al. Prognostic role of pro- and anti-inflammatory cytokines and their polymorphisms in acute decompensated heart failure. Eur J Heart Fail. 2008; 10: 396-403. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18353715
  23. Pan JP, Liu TY, Chiang SC, Lin YK, Chou CY, et al. The value of plasma levels of tumor necrosis factor-alpha and interleukin-6 in predicting the severity and prognosis in patients with congestive heart failure. J Chin Med Assoc. 2004; 67: 222-228. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15357108
  24. Jug B, Salobir BG, Vene N, Sebestjen M, Sabovic M, et al. Interleukin-6 is a stronger prognostic predictor than high-sensitive C-reactive protein in patients with chronic stable heart failure. Heart Vessels. 2009; 24: 271-276. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19626399
  25. Maeda K, Tsutamoto T, Wada A, Mabuchi N, Hayashi M, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol. 2000; 36: 1587-1593. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11079662
  26. Marcucci R, Gori AM, Giannotti F, Baldi M, Verdiani V, et al. Markers of hypercoagulability and inflammation predict mortality in patients with heart failure. J Thromb Haemost. 2006; 4: 1017-1022. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16689753
  27. Chin BS, Blann AD, Gibbs CR, Chung NA, Conway DG, et al. Prognostic value of interleukin-6, plasma viscosity, fibrinogen, von Willebrand factor, tissue factor and vascular endothelial growth factor levels in congestive heart failure. Eur J Clin Invest. 2003; 33: 941-948. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14636296
  28. Eskandari V, Amirzargar AA, Mahmoudi MJ, Rahnemoon Z, Rahmani F, et al. Gene expression and levels of IL-6 and TNFalpha in PBMCs correlate with severity and functional class in patients with chronic heart failure. Ir J Med Sci. 2018; 187: 359-368. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28889349
  29. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, et al. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001; 103: 2055-2059. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11319194
  30. Kim HN, Januzzi JL Jr. Natriuretic peptide testing in heart failure. Circulation. 2011; 123: 2015-2019. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21555724
  31. Kawahara C, Tsutamoto T, Sakai H, Nishiyama K, Yamaji M, et al. Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J. 2011; 162: 639-645. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21982655
  32. Li H, Gao S, Ye J, Feng X, Cai Y, et al. COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3. Mol Cell Endocrinol. 2014; 382: 998-1006. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24291639
  33. Rehsia NS, Dhalla NS. Potential of endothelin-1 and vasopressin antagonists for the treatment of congestive heart failure. Heart Fail Rev. 2010; 15: 85-101. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19763821
  34. Gottlieb SS, Harris K, Todd J, Estis J, Christenson RH, et al. Prognostic significance of active and modified forms of endothelin 1 in patients with heart failure with reduced ejection fraction. Clin Biochem. 2015; 48: 292-296. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25541019
  35. Perez AL, Grodin JL, Wu Y, Hernandez AF, Butler J, et al. Increased mortality with elevated plasma endothelin-1 in acute heart failure: an ASCEND-HF biomarker substudy. Eur J Heart Fail. 2016; 18: 290-297. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26663359
  36. Flevari P, Theodorakis G, Leftheriotis D, Kroupis C, Kolokathis F, et al. Serum markers of deranged myocardial collagen turnover: their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am Heart J. 2012; 164: 530-537. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23067911
  37. Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998; 98: 1728-1734. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9788826
  38. Morishita T, Uzui H, Mitsuke Y, Amaya N, Kaseno K, et al. Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017; 4: 321-330. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28772055
  39. Vorovich EE, Chuai S, Li M, Averna J, Marwin V, et al. Comparison of matrix metalloproteinase 9 and brain natriuretic peptide as clinical biomarkers in chronic heart failure. Am Heart J. 2008; 155: 992-997. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18513509
  40. Sanchis L, Andrea R, Falces C, Llopis J, Morales-Ruiz M, et al. Prognosis of new-onset heart failure outpatients and collagen biomarkers. Eur J Clin Invest. 2015; 45: 842-849. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26077878
  41. Buralli S, Dini FL, Ballo P, Conti U, Fontanive P, et al. Circulating matrix metalloproteinase-3 and metalloproteinase-9 and tissue Doppler measures of diastolic dysfunction to risk stratify patients with systolic heart failure. Am J Cardiol. 2010; 105: 853-856. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20211331

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?